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NATTONAT. ADVISORY COMMITTEE FOR AERONAUTICS

TECHENICAL MEMORANDUM 1268

ISENTROPIC PHASE CHANGES IN DISSOCIATING GASES AND THE
METHOD OF SOUND DISPERSION FOR THE INVESTIGATION OF
HOMOGENEOUS GAS REACTIONS WITH VERY HIGH SPEED

By Gerhard DamkGhler
I. INTRODUCTION AND STATEMENT OF THE PROBLEM

In seeking to Investligate kinetlically those homogeneous gas
reactions which proceed at very high speed or at very high temperatures
we are frequently led to the field of isentropic changes of state in
dissoclating gases, a fleld which as yeot has received no detalled
theoretical treatment. This is the more remarkable since more than
30 years ago W. Nernst proposed the investlgation of very high speed
reactions kinetically through measurement of the speed of sound at varilous
frequencies, that 1s; a method whereby isentroplic or approximately
isentroplc changes of sitate are impressed on the gas and it 1s observed
whether the reactlions corresponding to the equilibrium state can or
cannot follow the sound frequency used, the veloclty of the sound being
different in the two casesl. This sound dispersion method, in which more-
over instead of the sound velocity the sound absorption can likewise be
measured as & function of the frequency, has subsequently often been
used, particularly after it was shown by H. O. Kneser?e that also the
transition from the energy of translation into internal molecular
energy (primarily energy of vibration) can be kinetically investigated
by sound tests of this kind. However it was still lmpossible to apply
the sound dispsrsion method to cases of more complicated reaction kinetics
since the evaluation formulas of such sound teste always assume a
knowledge of the kinetic laws3 (in particular the dependence of the

*"Tsentropische Zustandsdnderungen in Dissozilerenden Gesen und die
Methode der Schalldispersion zur Untersuchung sehr Schneller Homogener
Gasresktionen." Zeitschrift flir Elektrochemie, Bd. 48, Nr. 2, 1942,
pp. 62-82. (The conclusion of this paper, sections V to VIII has been
published as NACA ™ 1269.)

lSee dissertation by F. Keutel conducted in the Nernst Laboratory,
Berlin 1910.

®H. 0. Kneser, Ann. Physik 11, 761 (1931).

3See A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Berlin, 1920,
380 to 385. H. 0. Kneser Ann. Physik 11, 761 (1931), a.nd.H 0, Kneser
and 0. Gauler, Physikal. ’Ztschr. 37, 677 to 684 (1936)
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reaction velocities on the concentrations) and only the remaining
undetermined reaction veloclty constants are obtained. Thus the problem
8tl1ll remained of deriving an evaluation formule for such sound tests
which is free from any restrictlng assumptions as regards the unknown
reaction veloclties.

The knowledge of the lsentropics of dissoclating gases 1las also
required, however, for the understanding of numerous gas dynamic
phenomensa in hot combustion gases. Such phenomens can be very well
studied in pilpes for which purpose several relations of G. Damkéhler and
Adam Schmidt were recently obtained. In these relations there agaln
always occurs the isentropic exponent which for nondissoclating gases
agrees with the ratio of the heat capaclties CP/CV = k. This, however,

does not hold for dilssoclating gases. But in this case too 1t was

recently found by G. DamkShler and R. Edse for several examples in

as yet unpubllshed computations that the isentropic can be represented

by the general polytropic equation pV™ = comst. (p = pressure, V = volume),
even over large pressure Intervals. If, for example, the gases of the

stoichiometric CO combustion (CO + % 0o as the initial mixture) which

are assumed initilally to be at 40 atm. and 3450° X are expanded
isentropically to 6 atm. and then again to 1 atm.5, the temperatures
assume the values 2973 and 2615° K; the total number of moles changes

from 1.197 to 1.142 to 1.099 (referred to 1 mole CO + % mol Op a8

initial mixture) so that the lgentropic exponent m becomes 1.115 in
the upper pressure interval and 1.103 in the lower pressure interval.
The value of m thus changes by only about 1 percent even in this large
Interval.

In the following we can therefore restrict ocurselves to the
treatment of the differential isentroplc changes in state in
dlssoclating gases. It will be assumed, however, that several
dlssoclation equllibrium states occur since this is practically always
the case for high-temperature reactions. In the dissoclatlon of pure
€Oy, for exemple, we have to take into account both

2 Coge22 CO + Oy (1)

4Iamk8hler, G., end Schmidt, A., Ztschr. Elektrochem. 4T, 547 to 567
(1941).

Ssuch pressure relatlons occur for example in the case of detonation
heads in pipes. :
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Opg22 O (2)

In the combustion of hydrocarbons wlth oxygen we have to consider
three additional equilibria

2 H,0e22 H, + O, (3)
2 E,0Q2H, + 2 OF, (%)
Hye22 E (5)

and in the presence of nltrogen, also the reaction

Ny + Op@22 NO (6)

In vwhat follows the problem of the differential isentroplc changes
of state in dissoclating gases wlll be treated quite generally, namely,
the attalmment of complete equilibrium at each Instant on the one hand
and on the other the incomplete equilibrium state in the sonic field.

A generally valid formula for the reaction-kinetlc evaluatlon of sound
dlspersion teste is obtalned. Almost all physical effects which like-
wise give rige to sound dlspersion and can therefore act as dlsturbing
factors are discussed and quantitatively estimated. Gensral points

of view are obtalned for the experimental carrying out of sound tests
in the high-temperature rangs.

IT. THE DIFFERENTTAT. ISENTROPIC EXPONENT m FOR THE CASE OF

COMPLETE ATTATNMENT OF CHEMICAL EQUILIBRTUM

We consider a definite quanbtlity of an ideal gas mixture of
varlous kinds of molecules |J, among which exist n thermodynamically
mutually independent equilibrium condlitions. To these correspond n
overall reactlons, which however can be arbitrarily chosen to some
extent.
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The followlng symbols will be used:

- (8)
PN

Cy =iNJQVJ

k = Cp/Cy

m

N3 Cpy

absolute temperature (°OK)
volume of gas considered

number of g-moles of the type 'J contained

in V
total number of g-moles contained in V

molar welght of the particles of type J
density

g-moleg of the type J in unit volume

partial pressure of particles of type J

total pressure

gas constant = 1.986 cal/mole deg = 8.313 X MD7
erg/mole deg

molar heat at consteant pressure of the
molecules of type ]

molar heat at constant volume of molecules
of type J

.

enthalpy of gas gystem consldered

-~ partial molar enthalpy of molecule of type J,

heat capacity of the gas system consldered
at constent pressure and constant number
of moles .NJ

heat capacity of the gas at constant volume
and constant number of moles NJ

exponent in the i1sentropic pV® = constant.
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The 1th overall reaction 1s assumed to satisfy the stoichiometric
equation of the type

lVlZ|Xl + |V27’IX2 + . . .:
—
‘_lv5llX5 + |V67,|X6 + ...+ Wy (7
here
Xj is the chemlcal symbol for the molecule of
the type
|vjzl the absolute value of the stolchiometric
conversion coefficlent of the molecules
of type J (first index) for the 1th
reaction (second index); for the reaction
golng from left to right, corresponding
to the Eucken notetion® we have
vbl >0 if the molecule of type J vanlshes
Vhl <0 1T the molecule of type J originates
Vi = 0 if the molecule of type 'J remains unchanged
Wy = \BZHJ heat of reaction at constant pressure for

the 1th chemlcal reaction
A differential isentropic change in state, indicated by ©, in

the gas mixture considered must on the one hand satlisfy the first
fundemental law, 1.e.

J
OH OE Z OH
Vép = BH = T + [ p + 28\ BN (8)
(aT)PN,j (aP)TN 5 (BNJ> i !

6Precisely the opposlte sign convention is used by American
investigators.
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or with the relation (%%) = 0 which holéds Tor ideal gases and
™y

wlth the above notation.

CpBT - Vop + iHJm\TJ =0 (9)

On the other hand each of the n independent overall reactions ﬁust
satisfy the law of mass action, which for the Ith reaction assumes
the form

J
> vyilnpy = 10Ky (10)

where K; denotes the equllibrium constant which depends 6nly on the
temperature. For the differential change in state we have therefore
n further determining equations:

J
%) _ sink, = ML &r ' (11)
v

In equations (9) and (11) we now replace the differential changes
oT, Bpj, and SNJ by the magnitudes 3oV, 8p, and Bdzy where Jzp

indicates how often the mth reaction equation (7) for the differential
change In state has proceeded from left to right. We have

8Ny = Z Vomd2 (12)

(13)

m
S o, - =S o W

2
it
1
<
B
o
[N}
B

From
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follows
m SZ
o % 8 _ SN _5%p BV .
T = tY N_p+V+§:va (16)
and from
pN
by = o2 (1)
there 1is obtained
s m
_E’,1=§2_§1‘I+5_N1=§2+§ v - ve X\%2m (18)
b D N Nj P m JmNJ N

Substituting these expressions in the equations (9) and (11) and using
the relation

= = =7 (19)
iNJ(Q.PJ - Cyy)

there is obtained as the expresslon for the first fundamental law:

m

W,.\ 8z
51" S) _ - m m
ko=t _RP + E (nvm [h‘. l] _—RT>—N =0 (20)

and the law of mass action of the 1th reaction 1s given by

sy (N miﬁ ivlv\,%
-g,f?+ E'T-—V1P+ BTVm+ leijJ- sz=O(El)
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For briefness we write:
[ 2

W
1
A, =nrvy - [k - 1]55 . (22)
W J
B?,m=§;%vm +ZVJ7'VJDINA§ -~ ViVn (23)
W
1
Cy = Fr - V1 (2k)
hence
A A, + gC (25)
RT = 1 K Z. 5

and obtain from the 1 +n equations (20) and (21) the system of
equations '

“
Bz dz : bz
e v -1V —2 ¥ —_aVv __
peov "My vt Ert - tATy Sk
8p V¥ ®21 v %25 v b2n ¥ _ .
R TRty ab RS o Pin - gy - "1+ R0
(26)
oz &z Bz
Sp ¥ —1V —2 v —ao vV __
CoT v tBl{ sy tBe [ syt - ¢ -t By o7 = (Ap + KCp)
8z 8z 8z
8p ¥ 1V - —a v _
Cnpav+BnlN 57 * B v Y + Bon g 57 = (A, + KCp)
, . ’ . J
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From the above system of equations the isentropic exponent m can be
jmmedistely computed. For, from

me = const. (27)
we have
Sp 8V _
2 tm o= o] (28)
and therefore
0 Ay Ay - Ay
Ay By B12 Bin
Ay Boy Boo Bon
=8p ¥ An Bn1 Bpo * * * Bpp N
m=Ew TRt = e (29)
1 Ay Ay . . Ay
Co Bol Bop Bon
Cn Bm Bno - Bon




The lsentropic exponent m in dissoclating parses is thus referred to the ratlo k of the
molar heats and the ratlo of two determimants Ay and A,. The dimensionless magnitudes in

the latter A4y, Bzm, Cy; eare Immediately glven aas soon as the composition of the gas end the

heats of reaction of the n oversll reactions are known. In order to avoid any errors in
writing the indices 1t is best to prepare a table of the n overall reacticns as wo shall see
below., The two determinants A, and A, are to a large extent symmetrically constructed and

contain 1 + n rows corrvesponding teo the first fundamental law and the n mass action laws for
the n thermodynemically Indeperdent chemlcal reactlon possibilities. It 1s immaterial in what
manner the latter are expressed. If, for example, the original overall reactlon 1s replaced
by a reaction which is obtainsd by the addition of the reactlon @ taken x times and

the reaction taken y times there follows from (22) to (2k)

- . W
m3 =l +3vp) - [ - YT T2 sy 4y - (30)
W, + gW .
C5 = -—:‘R-j-—-—g -(xvy + yvp) = x0) + 3Co (31)
. o+ 3, - w : _
Bom = -—lﬁ—— Y +L(IV31 + T30V im 1—% ~(xv + yVp)Vp = XByy + ¥Bpy for (B #
(32)
W ) ' _
Bi5 = gkl +yip) + D vylevy + TV T wlEL HTw) =3By + kg for O 4 O
(33)

ot

§92T WL VOVN




-

l’\?l

B3 - - - By

1 Al

Cy By
(xCq + yCp) (xByq + yBEl)

Cn Bp1

89T WL VOV
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The last determinant remains unchenged if we subtract the second row
multiplied by x from the third row. There is then obtained:

1 Ay (xhy +38p) . . . A
C1 'Bll (xB11 + yBio) . . . Bip

Lo = yCo ¥Boy y(xBoy + ¥Boo) . . . ¥Bop (36)
N B (xBo1 + 7Bop) . . . By

If we now subtract the second column multiplied Ey x from the third
column there 1s obtained: :

1 Al JAr . . ., Ay
Cl Bll yB12 . . . Bln
Cn BIJJ. an2 . Ty Bnn

Taking the common factors of the third row and the third column outside
the determinant we have

Ae = y2A2 (38)

In & similar manner we have for the new determinant in the numerator

N =yon _ (39)
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so that the quotient becomes
&
E "5 (k0)

Thus it has been mathematically proven that the expression (29)
for the lgentroplc exponent m 1is independent of the masnner in which
the n thermodynamically independent reaction possibilitiles are
expressed by n overall reactions. Physically of course no other
result could have been expected.

ITT. THE INCOMPLETE ATTATNMENT OF CHEMICAL EQUILIERIUM IN THE
PLANE SOUND WAVE (NEGLECTING THE EFFECTS OF HEAT CONDUCTION,

FRICTION AND DIFFUSION ON THE SOUND DISPERSION)

If a gound wave is allowed to pass through e gas the latter is
subjected to periodic compresslions and expansions which, to a first
approximation, are isentropic. In the case of a dlssociating gas for
sufficiently high sound frequencies the chemical reaction velocities are
no longer sufficlent for the attalnment of complete equilibrivm and we
have the case of sound dispersion. In the theoretical treatment of the
latter, which 1s partly also a problem of flow theory, three conservation
laws are to be taken into account: the conservation of mass (continuity
equations), the conservation of energy (first fundamental law of
thermodynamics) and the conservation of momentum (Euler equation of

hydrodynemics).

We consider & definite gas mass, 1. e. & volume V, fixed with
respect to the flow, of such small dimensions that the same state may
be assumed throughout. This volume changes with time by differential
amounts in the following manner:

Continuity equations:

4N m dz
D Vn (1)
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n
dN dzp,
w=-2 Yna (2)
(43)

where w 1s the flow veloclty at a point fixed in space over which a
plane sound wave passes in the positlve or negative dlrection.

Energy equation:

or on substituting the enthalpy H = E + pV and after some computatlon

Cp &2 &Z-ve- Zwm 2=0 (45)

Momentum eguation:

v _ _ 92 -
= (46)

Equations (k1), (42), and (45) agree with the pre%ious equations

(12), (13), and (9). Equations (43) and (46) are respectively the hydro-

dynamic continuity end momentum equation. In equation (46) the added
friction term is neglected and in equations (44) and (45) the added heat
conduction. The particle interchange through diffuslon between the
nelghboring gas elements ls likewise not taken Into account.

For a sufficiently small sound intensity all the state variables
carry out sinusoidal vibrations about corresponding meen values ;
characterized by the index zero. To a first epproximation they agree
with the corresponding magnitudes of the equilibrium equations of the

[N B
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medium without sound waves.! We may therefore set:

P =32, +0% 5P=Re(gegx+ht>
V=V, + 8V 87 = Re (vegx + ht)
T=To+§T 6T=_e(gegx+ht)
P =py + B0 6p=B_e<£egx+h'b.
Ny =Ty + Oy Ny =Re (-Jegx ’ ha (47
N = Nb + BN SN = _5.(Eegx ++ht>
cy = GJO + SCJ Scd = Re (Ejesx + hi)
dzym = Re (gme@C + ht)

g

Re <wegx + ht)

where Re() denotes the real part of (). The underlined symbols are
complex magnitudes which take into account the phase angles between
the various magnltudes and are assumed independent of x and %; g is
complex and h 1s pure imaginary. They depend on the frequency £,
the sound velocity & and the damping constant 7y for the sound
eamplitude 1n the following manner:

gr + ht = Qﬂfi[t T g]:u yx (48)

IThe difference between the mean pressure value po 1in the sound

wave and the pressure in the medium without sound is, for example, of the
order of magnitude of the sound radlation pressure. The latter is
proportional to the energy density in the sound wave and therefore
proporilonal to the square of the sound amplitude. The above mentioned
pressure difference can therefore, for sufficlently small sound amplitudes,
be neglected as & small second order magnituds.
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or
*
exf - jmaginary pert of g, i.e. Tm(g)
_ _2nf & : - 49)
= —2nf \ (49
lEm(S)‘ since gx = ;<i§£i + 7>x
a
and
. *
y = Iag(g)l { and ¥ = real part of g. - (50)

For the time variation in moving forward with the flow along the path
curve dF/dt of any magnitude F in the equations (41) to (L6) we
can also write

4F o OF , wE | (51)

dt ot  ox

where OF/dt and OF/dx are the partial derivatives at a point of the
spatially fixed coordinate system, relative to which the gas particles
move periodically with the velocity w. In equation (51) the second
term on the right vanishes with decreasing sound intensity more reapidly
than the first term on the right because the former is proportional to
the second power while the latter is proportional to the first power of
the sound amplitude. We may therefore throughout replace the

operation d/dt by J/3t and use it directly on the expression (47).

The magnitude dz /dt in the initial equations (41), (42), and (45)
indicates how often the mth overall reaction occurs in the volume V
of the ges and ls thus proportlonal to.the mth reaction velocity. It
depends naturally also on the velocities of the individual elementary
reactions but these do not enter separately in the final formulas to be
derived for the sound dispersion, since they are not contained in’ the
initial equations (41) to (46). Hence only the velocities of the over-
all reactions can primarily be determined from sound dispersion .
experiments and not the velocities of the elementary reactiomns.

*pdded by the NACA reviewer for clarity.
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We consider again the 1th total reaction

Ivlzlxl +lv21|X2 .. .z::j|v51|x5 + IV6Z|X6'+ e s+ Wy, (T)

and denote by

ﬁi 1ts frequency from left to right per unit of time end volume
at a given instant;

T, its frequency from right to left per unit of time and volume
at a g%ven instant,

U, 1its corresponding frequency from right to left and left to right
in the equilibrium state (state in the medium without sound = mean value
of the state in the medium with sound), where U; = Ty = U3.

For dzj/dt there is then obtained

sisz - V(U - Ty) (52)

- «
The reactlon velocities U; and U; depend on the temperature T
and the various concentrations Cj- Since only very small changes in

State are_assumed impressed on the gas by the sound wave the magnitudes
U; and UZ differ only by a small amount from thé reaction velocity Uy

in the sound-free equilibrium state. We may therefore develop the first
order to arrive later at more generael formulas free from special
assumptions: We start not with ﬁi but with 1n ﬁﬁ:

-~
> . 3 1n Uy ia in T
InU; = 1In Uy + ———= 8T + —_— Bcj,
aT aCJ
‘or

1In - = ———= 3T +Z—-———— SCJ

Uy oT dcy

"ﬁ U E? u
= 1nl1 + 1 - Ul o 1 - Ul
Uy / - U »
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and similarly for the right to left reaction

i a in U d1m ¥ T o-u). § v
in L2 "tar, E Lge, = 1nf1 + L—Hx LBt
Uy acj Uy Uy

)
In the neighborhood of the equilibrium state the velocities U;
and UZ are no longer entirely independent of each other but mathematlcally
must possess such form that in the state of equilibrium itself where UZ

and U become equal the mass action law applies, i. e. for our
reaction (7):

v v
cl‘ lll c2| 21'...  conct. (55)
ol ol
This 1s possible only if we set: -
E)'L. = I{.ZC]J vlll co VQZ‘ “ae F(T,Cl,Ce, . .CJ) (56)

and

5 =‘£Zc5|v5ll c6lv61‘... F(T,cl,CQ,...C“J) (57)

In both equations on the right there is the same factor F(T,ci,cQ,...cJ)

which otherwise may quite arbitrarily depend on the temperature T and the
concentrations Cy It is not difficult to see that by means of the

expressions (56) and (57) all reaction-kinetic laws for the reactions in ,
either direction can be represented, subject to the only restricting
condition, namely, that in equilibrium they must lead to equation (55).
The megnitudes ®; and kz in equations (56) and (57) are the reaction

velocity constants which depend only on the temperature corresponding
to the Arrhenius equation -

- -
Bl_nkz_ qz

JT R (56)
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and

dink (a
1 _ 9 .
57 -~ (59)

where EZ and f:fz are the heats of activetion for the reactions in the

corresponding directions. Substituting the expression (56) to (59) in
the equations (53) and (54) and then subtracting the two latter from
each other there is obtained after brief computetion

0, -9, @ -4
Lo 1B - BsgmTe) v inc (60)
U RT J

The as yet undetermined factor F(T’cl’CE""cj) in the expressions (56)

and (57) dropped out in the subtraction.8 The stoichiometric coefficients
in equation (60) again have the signs corresponding to the Eucken
notation given sbove. In equation (60) there occurs the difference

in the heats of activation ?1’1 - (EY, which may be expressed in terms
of the heat of reaction W;. From the kinetic equilibrium condition

v
Ceol ezl...

V61!
Il

v
11
[

-
kzclo

J
=1, or, 1n —127, - ln‘EZ = - ZVJZCJQ (61)

f.c
1750

end the thermodynemic equilibrium condition

J f
In K7 = E Vyln Py = le[ln cjo + ln§+lnT] (62)
we have
- —
Ink, -Inky) = -1nK; + V;InR + V;In T (63)

gAt this point it is readily seen why we developed above the Taylor
> >
series not for Uj; but for 1In Uy
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or differentiating with respect to the temperature g'nwith account
taken of (58), (59), and (11)

- € W
a; - 43 1
= [ET - “J (6k)
Finally meking use of =
-SV . 6Zm
8lncy=-851nV+8In0,-= E im (65)
N,j N
and the previous relation
o “
5 InT = &, %, ; . (16)
v P N _

there is obtained from equation (60) after brief computation

= €« m 8
U -0, (F\ev , (W1 . y\e ¥y :g: N
o + (BT)‘I + (BT VO D +-:§: Erqm + xgthm - V'Vl — =0
(66)

The above equations (66), of which there exist as many &s there are
thermodynamicaelly independent overall reactions, completely correspond
to the n previous equations (21) as is seen by comparison of the
factors in parentheses. Equation (66) now cortains also, however, the
reaction velocities U, U;, and U; of the 1Ith total reaction, as
must be the case in the sound dispersion field. For very small
frequencies f or very high reaction velocities Uj; eguations (66) go

over into the previous equations (21). For, from equation (52) there
is obtained, using equations (47) and (48) -

3 &
Up -U1 _ 1 421 _ p.JonfiN 21 gx + ht (67)
U, U,V oat — | UV N

an expression which is proportional to the sound frequency f and
inversely proportional to the reaction velocity U; in equilibrium.



If we introduce the dimensionless magnitudes

_ 2nfN _ Eﬂfz

and again use the previous notation

and pm]a‘h ong ”.L'T\

- v
(A + ncn)$+ Cp

g ik o | I-” w3 |

a2 | g

8921 WI VOVN

Ay = ikvq - P (22)
[ L RT
.‘
b 1S vsivm &
Bim = E%Vm t 2 ViiVim fG ~ Vivp (23)
W
Cr = L _ Vo (2}4.)
3 ET 4
there is cbtained from equation (45), which lesds to the previous
d from equations (66), after brief computation, the system of equetions
-~
4 Z2 In
A — = = =
1y + Ap = + ...+ Ay R 0
. . \E'I — E’J — _Z.m _
+ (Byy + i¢q1)== + Bl = +oaee + B, = =0
\B11 ¢11)N 12 4 In Y
> (69)
Z Zo Zn
Bpp = + (Bog + i@po)}— + ... + Boy — =0
. N N - N
Nk | Ip : Zn o
= 4 = + veo + (Byp + 1¢,,) — =0 =




From the above there is obtained for the ratio of the relstive pressure changes to the relative
density and volume changee respectively, in the sound wave

o A y: 7o) rea A
A7 (Byp + ip11) Bip  ees Bin
A2 ]321 (322 + iq)gQ)--- Bop
P——- , By : . (Bpn + i) '
;ES_I’EY,—=K+A11 1 Bnp =H+%—;=meﬂp (70)
1 Al AQ ans ’ Aﬂ
cy (B11 + 1¢17) Bio B1n
o B (msiwmle. 3
c, By Bpp  -+.(Bpp + i%y)

Equation (70} goes over into the previous equation (29) if the phase a.ngle9 in the
expression mel® on the right vanishes, 1. e. if in the determinants Aj;' end Ap' the

e |

M- =~ 1 - e Py LRI . P Ry e - oL Llee semmes o cemamea e e o Fm Ll —mreeeed memwra Ao e
TAhleE plrMbe anple W Jaalcarcs DYy HOwW Ul uies pLrepb = cluang op LI SU U wWaye lcauo

the density and volume changes 8p and B8Y respectively.
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imaginery terms iQy; vanish. According to equation (68) this is

the case for sufficiently small sound frequencies T or sufficiently '
high reaction velocities Uj;. Thus we have also derived our previous
equation (29) by a purely kinetic method.

The determinants A;' and Ap' can be obtained from the
determinants A; and /Ap respectively of equation (29) by substituting
in the latter for the Bym vsalues those values which satlsfy the equation

” Bim' = Byp + 1Py (71)
with the ‘ad.ded conditions
%rr_fvﬂ for 1 =m
Py =g ¢ (72)

O . for 1 #m

The ratio pp/pr given by the expression (70) can also be obtained
from the purely hydrodynamic equations (43) and (46) by substituting
the expressions (47) and replacing, as before, d4/dt by O/dt. We then
have from (43)

L = - h% = gW (73)
and from (L46)
phw = - gp (%)
and multiplying the two last equations
heg'_ = gzg or finally g = —3a (75)

\/—E)_%

Substituting in the above equation the expression (70) and setting

old
L]

2%
I

=113

(76)
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where M is the mean molar weight there is obtained

g = ii— = :FE“fi(cos g - 1 Sin%) = :F<"2—Traf_i + 7) (77)

Thus the sound velocity a eand the damping constant 7 are referred to
the magnitudes m and © computable from equation (7@). For we have

mRT 1 o\ [mRT[ R '
a = = ~ =11 + — (78)
M o Y M 8
coss :
= _M_. 9 ~ D_'I - f
Y = 2xfy /mB_T sin - #f\ faﬁop(l 2’4-) (79)

The damping of the sound wave per wave length 1 = a/f is given by

' 2
1 = 2xtan @ 1+ & 80
y ntan 2 :rCP<+12> (80)

. Since physically the demping constant 7y enters only as & positive
value in the expression (48) it follows from (79) that also the phase
angle ©, which always amounts to only a few degrees (see below), is
positive. Hence according to equation (70) the pressure change B&p
leads the volume and density cheanges 8V and B8p respectively. It has
already been shown clearly by H. O. Kneser (Ztschr. Techn. Physik 16,
pp. 213-219 (1935)) that only in this way is there obtained for periodic
changes of state (on the pV-diagram) a closed curve leading to energy
absorption. )

Equations (70) and (78) and (79) can be ulitized in the following
menner for describing the kinetic relations in multiplying dissoclating
gases: For a constant gas composition, fixed pressure and temperature,
definite numerical values ere assumed for the n reaction velocities Uy,
and m and ¢ velues are computed by equation (70) for various sound
frequencies f and from these with the aid of (78) and (79) the sound
velocity a or the damping constant 7. There i1s then determined, in
& serles of measurements for the same gas composition, the same pressure
and the same temperature, the sound velocity or the sound absorption
as & function of the frequency. Finally the experimental a-f and y-f
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curves ere compared with the theoretical curves and it is seen which
expression for the assumed Uj; values gives best agreement with the

test curves. If, in particular, of the n reaction velocities the
numerical values of n - 1 are known (from other considerations), the
last unknown reaction velocity Up can be given exactly for the chosen
test conditions. By systematic variation of the latter in various series
of tests in which again the total frequency range is traversed the last
reaction velocity U, can be determined as a function of the concen-
tration cj and the temperature T, provided that these relations are

already known for the remaining n - 1 reactions.l0 Hence no special
reaction kinetic law is a priori assumed for U, but the latter can

be quite arbitrery and is determined by comparison of the experimental
end theoretical curves. The new procedure described for the evaluation
of sound dispersion tests thus differs fundementally from the procedure
used thus far since the latter meke special assumptions on the kinetic
laws of all the individual reactions whereas we now require only a
knowledge of the velocities of n ~ 1 total reactions. This will Dbe
seen more clearly below.

IvV. EXAMPLES FOR THE APPLICATION OF THE NEW FORMULAS

1. Older Cases of the Reaction-Kinetic Sound Dispersion

Before we apply the newly derived equations on the problems of
particular importance of high-temperature ‘dissocistion it will be shown
that naturally =sll the cases of sound dispersion already considered by
other authors are correctly described by the new formulas. - We shall
restrict ocurselves to the case of incomplete attainment of an individual
dissociation equilibrium, which was first computed by A. Einstein,ll
and furthermore the incomplete attainment of an energy term (vibration
term) in a molecule, as investigated by H. 0. Kneser.l2

Einstein considers only a single dissociation equilibrium in which
from & molecule X3 there arise two equal molecules X, so that the
reaction equation reads:

X &= 2% + Wy (81)
We shall denote it by the 'reaction index' 1.

107mis is also superfluous if the sound dispersion is "mainly"
brought about by a single total reaction. See the example of the COp
dissociation below. '

llginstein, A., Sitzungsber. Preuss. Aksd. Wiss., Berlin 1920, 380 to 385.
12¢neser, H. 0., Ann. Physik 11, 761 (1931)
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For the doubly indexed stoichiémetric coefficientsl3 there is obtained

Mi=1 Wi=-2

and therefore

vy =iVJl = -1 | (82)

Einstein does not meke use, as we do, of the heat of reaction W1 at
constant pressure but the dissociation heat D at constant volume so
that we obtain

W) = - (D + RT) (83)

For the constants (22) to (24) there is therefore obtained

A1=RV1-(n-l)g—:TL-=—R+(l€-l)<%+l)=(K-l)§%-l (8h)
J
h 2N _y2_(2 N o by, _D [N, LN
Bij1 = BTvl +:§::vjl 1, Vi~ = (BT + %> + (Nl + T 1= RT + N, + N,
(85)
W .

= =+ - = - [ ==

cl_BT “ <BT+1>+1 2T _ (86)

For the dissociation Einstein assumes a reaction of the first order
and for the recombination one of second order. This gives in equation (68):

SN -
U1 = kjc1 = k1C22

131me type of molecule is denoted by the first index and the
reaction by the second.
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From equation (70) there is then obtained

2

42 (r - L)[B11 + i913 - A1C1] - Ay

E-Epel® o By
r p p

p
=={1 +
Byp + 19y - M1C1 p B1g + 1911 - A€y

Since (k - 1) C; + A} = - 1, we have . " - 3
N N 1 D
(k - 1) + ]| +o—| + (& - Vg - 1
£ e D . /N , K ll , D D
ﬁ+(N—+-N—2)+—l—+-ﬁlf(H—l)-R—i-
- L 3L = )
or (K—l)[‘“@_[ 1 +Ii+£{.‘+iﬁi{_|
> Ll mo(3) (W) i
==& +
r

(87)

(88)

(89)
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Teking into account the previously given relation R/(k - 1) = Cy/N
there is obtained finally

(Rl ie]

CAN LN
2D _ vl ji1 + 221 4 %#3R
=—p— 1+
p2 N Gy AT
BT RN TR R
R 2 ky
This equation is entirely identical with the expression (19) given in
the Einstein paper (loc. cit.) if.we note that the term in parenthesis
(1 + 4Ny/No) is there erroneously written as (1 - 4Np/Np).

It may be remarked that the expression (91) even for the simple
dissociation equation (81) is already quite complicated. In particular
it is difficult to see how it can be generalized when there are several
dissociation equilibria under consideration. By way of contrast the
new expressions (29) and (70) of the present paper are of very symmetric
form and such that the physical meaning is clear.

M. 0. Kneserlh considers a gas whose molecules possess a single
internal energy term and which in the sound field i1s incompletely excited.
In order to be &ble to treat this case with the formulas of the present
paper we consider the gas as built up of two types of molecules Xj
and Xp: the former is assumed not to be excited in the energy term
under consideration while the latter is assumed to possess the exciting
energy € per mol. The excitation msy then be considered as a chemical
reactionld.

X] —Xp (92)

which occurs without change in the total molecule number with the heat
of reaction

Wl =-~¢ - (93)

%neser, M. 0., Ann. Physik II, 761 (1931)
Las a single reaction it 1s denoted with the reaction index 1.
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The stoichiometric coefficients are then

J
Vi3 =1 Vo3 =-1 w1 = zg:vjl =0 (9k4)

In the computation of x only that part C, of the molar heat C, may

naturally be used which, independently of the sound frequency, is always
fully excited (as.for example translational and rotational energy) and
corresponds to the so-called external degrees of freedom: (.. the index a)
Hence

C
K== (95)

The ratio of the internally excited to the unexcited particles is given
by the Boltzmann law

-€ -€
N = =£
2. e RT end ¥ =1+e L
thus
A
N _1+eBRT (96)
N>

for complete equilibrium the part C; of the molar heat Cy due to the
vibrational internal energy term is

(97)



30 - NACA T™ 1268

€1 corresponds to the heat capacity of a "Schottky hump”l6 of the
excitation energy g. We thus have .

. e>2
-€ € S ’
== — RT 5
RT = R
N, N B o, e _2f€ (98)
N, Np € C,\RT
RT ==
e - —
The constants (22) to (24) then become
W. R

1 =/ €

Ay = kv - (kK - 1)—= = ==
1 ! AT Ea(BT> (99)

W R 2
B =_lv+ v2_1‘l.-v2=_N_+_N_=;_€_ 100
11 = gl E S R (100)
W .
1l -g

Ci === -¥VYy = — : 101
1=z Y TR (101)

Kneser assumes both the excitation and "deexcitation" of the inner
molecular term as a bimolecular reaction, i. e.

- NN ¢« NoN _
U; =k S P (102)

Introducing the mean time required to attain equilibrium as used by Kneser

fo ¥
N(ﬁ +€E)
:E

e §$ one obtained

end remembering that according to (96) and (102) k/k

1Okycken, Chem., Eng. IIT, 1, 104 (1937)
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after brief computation for our expression (68) above

s

1+ KT Rre S

P11 = 2nfp A== 1 - onfp ={— (103)
= C,\BT
RT

B

Substituting the expressions (99) to (101) and (103) in equation (70) there
is obtained )

R(1 + 1 2nfB)
Tall + 1 2xEB) + C1 (10ka))

Inl)d

or using equations (78) to (80)

| JORT
am\—=
M
l 2
~ RT RiCy + Cgl2nf
~ =1 + = ~v =a( $18 B)] (loub)
M 9y2 + Ea?(aﬂfﬁ)e
1o
7 &
T == - (10kc)
a[éy(gy + R) + Cg(Cy + 5)(2nf3)?]
Yl & n®
P RC] 2n°PB
c(C - 2 (1044)
Cy(Cy + R) + Ca(Cq + R)(2n£R)

These equations are entirely identical with those cbtained by Kneser.
Equation- (1044) represents as a function of the frequency f &a bell—
shaped curve whose meximum lies at

Ty = 1, [Culey + B) (10ke)
2nB\[Ca(Cq + R)
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and whose half value width in the case Cg® Cy lies at about 3.8 octaves. -

The example considered above of the incomplete molecular excitation
in the sound field naturally represents a very simple case. Considerably
more complicated cases have already been both experimentally and
theoretically investigated.l7 Of interest is the more or less mutually
independent excitatlion of the various natural vibrations in the same
molecule. A thecretical contribution to this problem has recently been
given by K1. Schifer.18 It is not impossible that in this case, too,
the formulas derived in the present paper can be successfully applied
if it is .desired to make no assumptions of any kind on the kinetic laws
of the vibration excitation and yet derive definite numerical values
for the reaction velocity. If, for example, each gas molecule possesses
two different natural vibratlons then, in a correspondingly chosen
temperature range, the molecules could be divided into the following
types:

1. molecules X; without any vibration excitation
2. molecules Xp in which only the first natural vibration is excited
3. molecules X3 in which only the second naturalﬁvibration is excited. -

Among these three types of molecules there exist two equilibrium
conditions so that in equation (70) we have 3-rowed determinants. This
example will, however, not be further considered here since this would
exceed the limits of the present paper. We shall discuss however a few
properties of the overall reactlons involved:

a. For describing the previously assigned changes in molar numbers
SNJ the transformation frequency ©8Z; of the l-th overall reaction

depends on the choice of the other overall reactions although the
individual overall reactions are thermodynamically independent of each
other since they correspond to n 1independent equilibrium conditions.

b. In particular cases from the velocities obtained for the overall
reactions there may be derived the elementary reactions that are of most
interest.

17see in particular the papers of the Eucken Institute especlally
in the Ztschr. physikal. Chem. B. since 1934.

18Sché'fer, Kl., Ztsch. physikal Chem. B. 46, pp.212-228, 1940.
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2. Relations Between the Overall and Elementary Reactions

Among the three types of molecules X;, Xp, and X3 which in our case

represent three different excitation stages or tautomeric forms of the
same chemical substance we have the following essentisl possibilities

Reaction 1 X; &= Xp (105)
Reaction 2 Xj = X3 (106)
Reaction 3 Xpo = X3 . (107)

They can be looked upon as elementary reactions or as overall reactions.
In the latter case odly two of these three reaction equations can be
considered as thermodynamically independent. The frequency with which,
for given molecular changes BNJ, the 1-th reaction proceeds from left

to right is as before assumed to be 8Z;. In the case of equilibrium the

velocities of the overall reactions will as before be denoted by Ui, the

velocities of the elementary reactions by u; and uj, depending on

Y
the direction. The questions as to whether in the equilibrium case wu,; =ﬁ:z,

i.e. whether the principle of microscopic reversibility holds, may be left
open. In Table 1 are given three possibilities for the choice of the
overall reactions (denoted by the thick lines in the diagrems) and the
relations between the &Nj and the ©8z; and between U; and the

€«
various 'GL and up. For the ©&z; and U; the three possibilities

of the choice of the overall reactions are distinguised by strokes above
the symbols,

Inspection of Table 1 leads to the following conclusions: Although
in the two cases I and II the same overall reaction occurs, namely,
X1 2 Xp, the frequencies ©&z7 end 5%Z; for describing any molar

number changes SNJ are in general different. For, on the one hand
we have 5z = 8No and on the other 8z = -8N;, and B®Np and -8N;
need not be equal. Also the velocity frequencies U, eand ﬁl corre-

sponding to the overall reaction in the two cases I and II are not

- necessarily identical. For it is not possible to derive from Table I

that U; = ﬁl- There exist, however, between the various stroked U
values certain relations which are given in the lower part of the table.
They correspond except for the sign, which for the U; 1s always positive
from the definition, completely to the relations between the various
stroked 3z;.
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Of the six different stroked U; values shown in the right part

of Table 1 only 3 are mutually independent and these can be obtained

from sound dispersion measurements. For this purpose it is only necessary
to compare the experimentally obtained dispersion curve with the two
theoretically obtained curves for the overall reactions of case I and

case IT respectively.

In the right part of Table 1 are found 6 equations with which for
the equilibrium case the velocities U} and W; of the elemetary

reactions are expressed in terms of the overall reaction velocities Uy.
Since altogether only 6 elementary reaction velocities exist (reactions
to left and right counted separately) it might be thought that they
could be computed individually from the Uy, values. In this way
might perhaps be proved the principle of microscopic reversiblility
which in the case of equilibrium requires that the velocities of

the elementary reactions to the right agree with the veloclties

of the elementary reactions to the left. This however is only a pure
assumption which need not be satisfled for maintaining a state of
equilibrium and which is obvious only for the over-all reactions in
either direction.l9

. - — h—
The six equations on the right of Table 1 for the U; and Up

are not independent of one another. Writing them in the somewhat clearer
form

- «
Ul = ul + u3
U G% +'3

2 = 3
e (108)

UE = u2 + U.3
- -3
Ul = _15.)1 + up
ﬁl = fl-J.._'.I__ + ‘EE

1970 assume the law of microscopic reversibility as a generally
valid law of nature is equivalent to denying for the molecular aspect
any type of check such as not only very frequently occurs in the
microscoplic aspect but is often found of very great use. I have in mind
the "catch" type of control such as is used in rotating doors for
regulating the traffic through them and which can also be observed in
nature (for example for the artifically constructed cases of certain
meat—eating plants). Naturally such a catch control in the molecular
aspect can not be described by a fixed potential surface such as -
introduced for exsmple by H. Eyring eand M. Polanyi (Ztschr. physikal. chem.
B. 12, 279 (1931) for the theoretical investigation of the activation
heats.
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S«
The u; and uj; are obtained as the quotient of two determinants which

now both possess the value zero. The determinant in the denominator
for example becomes '

(109)

It remains unchanged if to the first row are added other rows multiplied
by the signs given on the right. There is then obtained a new zero-—
rowed determinant, so that the latter vanishes. For the corresponding
numerator determinants the proof is quite analogous.

If the;sﬁore, for the equillbrium cage it is desired to compute the
velocities u; and u; of the elementary reaction from the overall

reaction velocities Uj, assumed known, further assumptions must be made.
The principle of microscopic reversibility might for exsmple be
tentatively assumed as correct and there would then be obtained

5 ¢«
u; = Uy o=uy (110)

and therefore from equation (108)

w1 = 2(Uy - Uy + Ty) . (111)

up =%—(- Uy + Up + Ty) (112)
1 -

'll3 = E(Ul + U2 - Ul) (113)

If in particular

UL =Up =0y =T (11k)
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there would thus be obtained on the assumption of the #alidity of the
principle of microscopic reversibility

-~

e 1
Uy T W SUp =y =ug =y =50 (115)

For the case of complete checking of the reaction in one direction, on
the contrary, there would be obtained, as can be easily seen from the
schematic diagrems on the left of Table 1,

)
- -3 ¢ ;
. U.l = U.3 = UQ =0
and > : (116)
- «
up = u3 = U.2 =T
J
or

The question as to the menner in which the thermodynamic equilibrium

between the threée forms X1, Xp, and X3 1s maintained, whether microscopically

reverslible or irreversible, remains entirely open and there exists as yet
no experimental possibility of providing a reliable decision. Never-
theless in very many cases the principle of microscopic reversibility will
have to be assumed although on the basis of moleculer theory the checking
by means of the potential barriers in the semnse of Eyring-Polanyi could

be considered. Under these conditions it is possible from sound dispersion
measurements for the equilibrium case to determine not only the

velocities U; of the overall reactions but also the velocities of uy

of the elementary reactions. The given procedure, which was here
carried out only for a special reaction kinetic system, can readily be
generalized to other cases.

3. High-Temperature Systems (Dissociation of 0, and CO,)

We now come to the main consideration itself of the present
peper, namely the kinetic investigation of very rapid homogeneous gas
reactlions in the high-temperature range where dissociation effects
assume prime importance. The application of the formulas will be
clarified with the agid of two examples, namely, the dissoclation
of pure 02 and pure CO5.



In the dissociation of pure Op, which we shall consider at T = 2600% and 1 atm, we are
dealing with a single reaction which again we denote by the index 1. We have

Type of
Particle j

0y

0

0o =20 . (118)

Wy = - 121.61 kcal (119)
1

PO _ 0.0243 Atn2 X (120)

ﬁ
w8

] _
E_‘f = - 23.56 (121)
N .
1 0.9760 1.085 1 . 209,340 to 9.022
2  0.02k0 41,66 -2 4.965
D = 1.0000 Vy = -1 F (122)
Z %Jgpj = 9.235 to 8.925‘, k = 1.274 to 1.286
W - 1.27h + 0.27h (23.56) = 5.182 (123a)
Ay = BV - [n- 1]_3_-=

BT 1. 1,286 + 0.286 (23.56) = 5.452 . (123b)

20Roth values are taken from Johnston and Walker. The higher value from the Jour. Amer.

Chem. Soc. 57, 682 to 684 (1935), the lower value from Jour. Amer. Chem. Soc. 55, 172, 187 (1933).

The computation is here carried out with the two values, which differ aeppreclably, in order to
learn the effect of such uncertainty on m apd gk -~ m. The higher Cp value is probably the
more correct since for it the ;Ag level (7881.6 cm~l) of the Op is teken into account.

-

g9cT WL VOVN
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_n ol 2 ) 1o
Byg = =V, + 2T e 23.56 + 1 (1.025) + 4 (41.66) - 1 = 190.23
RT N
= J
(124)
- .
¢y = i% - v =-23.56 + 1= - 22.56 - (125)

Substituting these numerical values in equation (29) there is obtained
Tor the differential isentropic exponents

0] Ay
A, By 1.274% - 0.087k = 1.1866 (1262)
m= kK + =
Ay 1.286 - 0.0949 = 1.1911 (126b)
C; By

Although in the example under consideration only about 1.2 percent of the
O, 1is dissociated the difference between the lsentropic exponent m and’
the ratio of the specific heats Kk 1s already quite comnsiderable, namely,
0.091 + 0.004, i.e. 7.1l percent of the &k value.

We shell now estimate in what frequency range the sound dispersian
by the O, dissociation is to be expected and what values of the sound
velocity and sound absorption come into question. The excitation of the
vibration heats will first be assumed to follow completely the sound
frequencies, i.e. we shall for the present dispense with the Kneser case
of the sound dispersion. '

In equation (70) we now require as a new constant @371, i.e. we
must first estimate the reaction velocity Uj:

3x 109% number of the bimolecular collisions per second of an O atom
at 273° K and 1 atm. with other particles

3 x 109 (V273/2600) =1 x 109 & number of bimoleculsr collisionms per. second
of an O atom at 2600° K and 1 Atm. total pressure with other
particles

0.024 x 109 % number of bimolecular collisions per second of an O stom
with other O atoms at 2600° K end 1 Atm. total pressure.
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0.024 x 1o9<1o-l3/1o-9) = 2.4 x 103 % number of collisions per second
of an O atom at 2600° K and 1 atm. total pressure with other
O atoms in the presence of a third particle of the_collision
complex of the two O atoms possesses a life of 10-13 seconds.

If each of the last-named termolecular collisions is suitable for
a recombination of the O atoms there follows from equation (68):

(2nf. 2)
2.4 x 103 x 0.02h

P11 = = 0,218¢ (127)

The 2 in the numerator compensates exactly the error arising in the
denominator from the fact that in the summation over all successful
collisions each collision, on account of the two O atoms that take
part, was counted twice.

The order of magnitude of @17 can be estimated, however, not only
from the recombination of the O atoms but alsoc from the dissociation

of the Oy molecule, though less accurately. Assuming a monomolecular
reaction

-122 x 103
U% =0.976x 1083 x e BT | (128)

in which the factor 10%3 is uncertain by two powers of ten but still
possesses the correct order of magnitude, then we have for 2600° X:

U,V
-%- = 0.976 x 1013 x 1071025 _ 5,49 x 102 (129)
and therefore
©11 = _2’-‘3-—2- = 0.0115¢F (130)
5.49 x 10

The agreement between the two entirely different estimates which
lead to (127) and (130), respectively, is quite satisfactory and can-
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not be expected to be better. We continue the computation with the
following numerical values: ®y1 = 0.2f and the following constants
obtained from x = 1.27L:

Ay =5.182 By = 190.23 Cp = - 22.56 (131)

Substituting in equation (70) there are obtained for the various
fréque?cies f the numerical values given in Table 2 and figs. 1(a)
to 1(c). '

In figures 1(a) to 1(c) a logarithmic scale was chosen for the
frequencies f along the axis of abscissas as is customary in repre-
senting sound dispersion measurements. The magnitude m, the sound
velocity a, and the amplitude damping 9 referred to unit length
with increasing f pass through a point of inflection which lies at
gbout 1450 cycles per second. The limiting values of m, as was to
be expected, are, for very low frequencies, the differentisl isentropic
exponent for complete equilibrium attainment, end, for very high
frequencies, the ratio of the specific heats & = 1.2740 at constant
pressure and constant volume. The sound velocity &a changes in the
entire dispersion region by about 3.6 percent. The amplitude damping 7y
per centimeter smounts to about 2 X 10-3 cm-1 at the point of inflection
so that the sound intensity decreases over a distance of 10 centimeters by
(1 - e-27 X 10) & 29 x 10 = 0.04 times the initial intensity, or a lowering
by 4 percent.

The phase angle ¢ and the amplitude damping 71 per wave length 1
with increasing frequency reach a maximum which similarly lies at
about 1450 cycles per second, the numerical value of @ being very small
since @ = 0.0349 corresponds to 2°. The previously given approximation
equations (78) to (80) are thus entirely justified and the term in
parenthesis proportional to @2 can even be neglected. The maximal 4
values here computed on the basis of dissociation are about 10 times
as large as the former 7yl values which, for moist Op at room
" temperature, were found in sbout the same frequency range and are
conditioned by incomplete vibration excitation.2l .

As a second high-temperature exemple we consider the dissociation
of pure COp Dbetween T = 2000 and 3200° K at a total pressure p = 1 atm.

Here we must consider a total of L types of particles, nemely,
COp, CO, 02, and O which we denote by the particle index 1 to 4 and
which are obtained on the basis of two overall reactions. The corre-
sponding stoichiometric coefficients ij are given in table 3.

2lKneser, H. 0., Ztschr. techn. Physik 16, 216 (1935), fig. 5.
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There will agein first be computed the isentropic exponent m for
complete gttainment of equilibrium. The required numerical values are
given in Table 4. Since according to the latter the partial pressure
of the O atoms 1is still quite small, it is natural to use two types of
computations for the isentropic exponent m, namely, the exact computation
teking into account the two reactions 1 and 2 (see Teble 3) and en
approximation computation in which only reaction 1 is teken into account
and reaction 2 neglected. The isentropic exponent obtained by the second
method will be denoted by m'. We thus have:

0 Ay Ap
Ay Bj1 Bi2
B
m=g + AQ B21 22 (132)
14 A
C;y By1 Big
Co Bpr Bop
and
0 A
A, B
m' =g + Ll (133)
10N
C1 Biz

Substituting the numerical values of Table 4 there is obtained Table 5
and figure 2. ' .
The ratio K of the specific heats rises continuously in the

temperature range 2000 to 3200° K because by the increasingly stronger
dissociation the number of the 2- and l-atom molecules increases at the
cost of the 3-atom COp molecules. K - m and & - m' are positive

and increase with increasing temperature on account of the increasing
dissociation. The isentropic exponents m &and m' vrespectively run
through a minimum because above 2600° K with increasing temperature &
increases more rapidly than k¥ - m and kK - m'. The values m &and m'
obtained with and without account taken of the Oo dissociation

respectively differ only very little.
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The fact that the approximete expression (133) yields practically .
the same numerical value as the exact expression (132) 1s due to the
circumstance that Bop is considerably greater than the absolute values
of the remaining terms of the two determinants. If the latter are
developed in minors there is obtained

0 A A
0 Ay
A1 By1 Bip| ¥ Bop
Ay B1a
Ap Bpyl Bpo
end ( (13k)
1 A
C1 Bi1 Bl2| ¥ Boo
C1 Bi1
Co Bo1 Bpo J -
from which m @ m'. The expression ) ' .

J
Wo EE 2 N 2
= =Y -+ V. = _ Y

is considersably greater than the other B,  because, on account of the
stoichiometric coefficients V31 (see Table 3), it contains a term N/Nj

referring only to the O atoms and, since the latter 1s inversely
proportional to the small partial pressure p, of the O atoms, it is
very large. '

We shall now consider the sound dispersion which can be expected
in pure COs on the basis of the dissociation equations 1 and 2
(see Table 3) at 2600° K and 0.9994 atm total pressure. For this
purpose we must first estimate the overall reaction velocities U
and U2 for the equilibrium case which according to equation (68} also

determine the values and Qoo entering equation (70).

P11
We start with the reaction velocity Us since it—is of small

effect for the process of the sound dispersion and we can dispense with -

its considerstion briefly. For 1f at complete attainment of equilibrium

. of reaction 1 the reaction 2 were no longer able to follow the increasing

sound frequency f then according to Table 5 the m value of equation (70) <
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would in order of magnitude increase only from m = 1.1003 teo m' = 1.1022,
that is very slightly compared to the stage &k - m' = 0.0728 which will be
passed through if the reaction 1 does not occur together with 2. But even
if the reactions 1 and 2 in the same frequency range can no longer follow
the sound frequencies there is still no basis found for a larger effect

of the reaction 2 on the dispersion process. We estimate as before the
recombination of the O stoms in the termolecular collision:

1x 109 & number of the bimolecular collislons per second of an O atom
with other particles at 2600° K and 1 atm total pressure.

0.00670 x 107 = 6.79 x 106 ~ number of bimolecular collisions per second
with other particles of an O atom in dissoclating COp at 2600° K
end 1 atm total pressure.

6.79 X 106 x 10-13/10-9 = 6.79 x 102 % number of collisions per second
of an O atom in dissociating COp at 2600° K and 1 atm total
pressure with other O atoms In the presence of a third particle.

If each of these termolecular collisions leads to recombization
there 1s obtained

Pop = 2nf2 = 2.72F (135)

6.79 x 102 x 0.00679

To estimate the reaction velocity U; we similarly use the reverse
reaction, i.e. the combustion of CO with Oy at 2600° K in the presence of
excess COp and the O atom content of the equilibrium. As elementary
reactions that determine the velocity we shall take the following into
consideration:

Elementary reaction I:

CO +0+M—>C0 + M + ca. 125 keal (136)
Elementary reaction II:
CO + O —>CO, + O + ca. 8 keal | (137)
For the reaction I we estimate:

7 X 1099 number of bimolecular collisions per second of a CO molecule
at 2739 K and 1 atm. total pressure with other particlies.

22Jost, W., Explosions~ und Verbrennungsvorgéinge in Gasen, Berlin

1939, p. 338.
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7 x 109 \/273/2600 = 2.27 x 109 ® number of bimolecular collisions per
second of a CO molecule at 2600° K and 1 atm. total pressure
wlth other particles.

2.27 x 109 x 0.00679 = 1.54 x 107 ¥ number of bimolecular collisions -
per second of a CO molecule at 26000 K and 1 atm. total pressure
with other O atoms.

1.5% x 107 x 10713 x 2.26 x 109 = 3.5 x 103 x number of collisions per
second of a CO molecule at 2600° K and 1 atm. total pressure
with O atoms in the presence of a third particle.

If the elementary reaction I, which is assumed to occur for each
termolecular collision, determines in general the velocity for the
overall reaction 2C0 + Op —= 2C0, there would be obtained from
equation (68)

2nf X 2

= = 2. 0-2 8
P11 3.5 x 103 x 0.1628 2.2 x 1071 (138)

In the high-temperature range the elementary reaction II of
equation (137) could also be an important factor. It undoubtedly
possesses a considerable, though as yet unknown activation energy Qry-

We shall estimate with various arbitrarily assumed qry values and obtain:

2.27 X 109 X 0.078 = 1.77 X 108 % number of the bimolecular collisions
per second of a CO molecule at 2600° K and 1 atm total pressure
with Oy molecules.

The conversion probability per second of a single CC molecule
with an Op molecule under the same temperature and pressure conditions
then becomes

~20000
1.77 x 108 x o 1.986 x 2600 _ 3 g9 x 106 for agp = 20 keal
-400Q0 . .
1.77 x 108 x o 1986 X 2600 _ 769 x 10%  for qp; = 40 kcal
-60000 . -
1.77 x 109 o 1.986 X 2600 _ 3 6ol x 103 for a; = 60 keal

oo
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If the elementary reaction II of equation (137) were alone to
determine the velocity of the reaction 2C0 + 02 — 2(3‘02 there would

be obtained

- 2xf X 2 _ ) =
Pyq = 2 = 2.09 X 1077f  for q. = 20 kcal (139)
3.69 X 10~ x 0.1628
- 2nf X 2 - -3 -
Q.. = = 1.005 X 107°f for = 40 kcal  (140)
L 7.69 X 1.01L X 0.1628 11
9, = 2REX2 - 4.8 x 107°f for q = 60 keal (141)
1.604 x 103 X 0.1628

These values of ©@ computed on the hasis of reaction II extend over

11
the range 2 X 1072 +to 5 X 10"2f which includes the value

¢, = 2.2 X 1072f cbtained from equation (138). This is 22 times as
great es the value of @,; that is obtained from equation (140) for
the reaction II with @ = 40 kcal. As long, therefore, as a;; 1s

not considerasbly greater than 4O kcal, it must be possible on the basis
of sound dispersion measurements to distinguish between the two reaction
possibilities I and II and &t the same time it should be possible from

tests at various temperatures to determine .23 The relations &re
911

numerically even more favorable, il.e. becomes also greater than

q
1T

40 kcal, if we drop two of the restricting assumptions used thus far,

namely, that the reaction I is successful for each three-particle

23Case IT, i.e. the reaction equation (137) is the more interesting
as 1t takes place between two quite 'stable initial molecules and still
leads to an active particle (O atom) so that chains can be Initiated.
The knowledge of the reactions between such stable initial molecules
where high activation energies must always be expected is quite gener-
ally important for many starting processes (induction periods) such as
for example occur in the prereactions in the knocking engines.
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collision and that for the kinetic process of II only'fwo quadratic

energy terms are of-importance.gu If in the first case only the
nth termolecular collision leads to & transformation and if, in the
second case 6 quadratic energy terms were effective®d there would be
obtained in place of (138):

= -2
@y = B X 2.2 X 107°fF (142)
and in place of equation (140):
-3 -3 : .
9,, = —003x 1079 _ 1,005 x 1073 (143)

30

1 [ _uo,000 \?

'3 \1.986 x 2600
This means that the experimental differentiation between the reaction .
posgibilities I and II would become still easier because the already -

large value (138) would become still larger and the small value (1L40)
gtill smaller.

We shall now see In what frequency range the sound dispersion in
pure CO2 at 2600 °K and 1 atm, total pressure is to be expected and

what numerical values are assumed by the sound velocity and sound
absorption. We shall compute the dilspersion curves from equation (70).

2J'l'The probebility that a system with s quadratic'energy terms 5
possesses a total energy greater than q 1s given by

é% 1 2 -1
o oefl X = (D
"o(a) ¥ o (B)

go that for s = 2 there follows the expresslon used w?(q) = eEET

See H. J. Schumacher, Chemische Gasresktionen, p. 15, Léipzig 1938.

224 terms from the vibrations of the CO and O, terms from the

relatlive motion of the colliding molecules; or 2 terms from the O2 vibra-
tion and 4 terms from the relative motion: see J, J. Schumacher loc. -

cit. p. 20.
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The required values of A,, By, and C; are given in teble 4. For

®;7 are used the rounded numerical values of the expressions (133),
(138), and (140), that is,

et

Case I: @17 .02t Poo

(1hh)

"

Case II: @7 .001lf @op = 2fF

The results of the computation are given in table 6 and figures 3a to 3c.

The m and a curves in figure 3a again show an S-shaped trend
ae was found to be the case in figure la for the Op dissocistion. In

figure 3a for the case II two points of inflection can clearly be seen:
the first at about 500 cycles per second for the small stage of the 0o
dissociation (0o <=20) and a second one at 1.5 X 105 cycles per second
for the large stage of the CO, dissociation 2C0&—=2C0 + Oo.

The ¢ and 7l curves possess in figure 3b marked maxima (compare
also fig. 1b for the dissociation of pure Op at 2600° K and 1 atm.)
which moreover in the two cases I and II are at the same height and
possess approximately the 1 value 0.1l. The maximmm 71 values are
thus evidently to a large extent independent of the assumed reaction

velocity U; for the COo dissociation.26

The equally lerge maximum values of 7yl (damping coefficient per
wave length) bring about the result that the damping coefficient 7 per cm
in case II assumes on the average larger values than in case I. More-
over in the reaction-kinetically determined sound dispersion only the
71 values run through a maximum with increasing frequency while the
7 values approach a constant maximm value,27 which lies higher the
higher the frequencies in the sound dispersion range; 7Ypax 1s in case II,
for example, 20 times as large as in case I; see figure 30.

26It may be noted that the meximum 7yl wvalue in figure 1b likewise
lies at about O0.1.

2Trpe reaction-kinetically determined sound absorption corresponds
in optics to & continuous absorption which sets in at a definite fre-
quency range wlth constant intensity and which extends up to infinitely
high frequencies. The case of light absorption in a finite frequency
range restricted at each end, such as occurs, for example, in ecolor
filters, appears to have no counterpart in sound absorption.
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In order to obtain a still clearer picture of the megnitude of the
sound absorption determined by pure reaction kinetics there are shown

in figure 34 the curves of e‘lo7_ and e‘?Q?. These give the trans-
mitted fraction of the sound energy if the sound wave_traverses a dis-
tance of 5 and 10 cm respectively. In case II for 107 cpe only 2.7

or 0.07h percent of the initial sound intensity remains. Above 5,102 cps
no sound measurement is any longer possible if the sound must traverse

a path from 5 to 10 cm from the sound source over a medium uniformly
heated to 2600° K. It 1s not possible however to dispense with such
measurement if sound of definite and controlleble frequency cen be pro-
duced at 2600° K. As a result of this too high sound absorption the
experimentally accessible sound dispersion range is as yet in many cases
for high-temperature reactions limited toward the high frequenciles. We
shaell return to this question later. But first there will be discussed
other effects on the sound dispersion which for reaction-kinetical investi-
gations can similarly restrict the useful frequency range for the eval-
uation of sound tests.

Transleted by S. Reiss
National Advisory Committee
for Aercnautics
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- ESTIMATED

TABLE 2

NACA T™ 1268

SOUND DISPERSION IN THE Op AT 2600 °K AND 1 ATM.

« ON THE BASIS OF DISSOCIATION ALONE

a

e &

4
[en-1]

7l

10
1 x 10°
5 x 102
1 x 103

2 x 103

lx 10
1l x10

1.1866
1.1869
1.1953
1.2132
1.2423
l.2721
1.27h0

4,80 x 10-)+

.78 % 1073

2,155 x 10-2

3.299 x 1072

3,400 x 10-2

1.031 x 1072

1.054 x 1073

9.006 x 10

9.325 X 10

L
4

9.007 X 10
9.040 x 1o*

N

9.107 X 10

9.217 x 1o¥*

L

9.332 X 104

1.675 x 1077
1.665 x 107
3.746 x 104
1.138 x 1073

2,319 x 103

3.474 x 1073
3.550 x 10°3

1.508 x 1073
1.499 x 1072
6.773 x 102
1.036 x 10°T
1.068 x 107t

3.239 x 1072

3.312 x 10-3
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Table 3
REACTION EQUATIONS AND STOICHIOMETRIC COEFFICIENTS
FOR THE DISSOCIATION OF COp
Type of Particle Coo CO 02 0
Particle Index 1 2 3 4
Reaction 1 2 COp (-_—2 200+ 0y VYy1=2 =2 - 0 -1
Reaction 2 0p 220 Vyp=0 0 1 -2 -1




NUMERICAL VAIUES FOR THE COMPUTATION OF THE DIFFERENTIAL ISENIROPIC EXPONENT m

TABLE 4

IN DISSOCIATING CO, (1 etm = 760 Hg)

T 4n %K

PEE mAh;l/e. ..

Pco2

20 gnawmlfe ... ..

\Fos

Pcos in Atm

DﬂnmAt]l-g-gqn

LA VAV

poeinAm.......

po:l.nA‘hn......

J
P = EE:PJ In Atm. . .

W1 in kecal
W in keal
Al v = I. .
Ay o v .
Bll - = @
312 ..
Bal e s @
322 -

01 = s =
C2 « .

2000

0.001337

0.000708

0.9960

.01728
00760
00006

1.0189%

1.1610
-132.79
=121,15

y o1

3.749
437.29
~101.62

-10%.55
6.812 x 10%

-32.43

-29.50

2300

0.01150

0.00525

.9100
.06045
.03000

1,001k

1.1635
-131.96
-121.41

3.558

3.182
131.96
=5.50
-7.80

uh63

-27.88
~25.58

2600

0.0605

0.0243

. 7518
.1628

0780

.00679

9994

1.175%0 -

-131.16
=121.61
3.270
2.945
67.09
11.587
9.737
624,16
-2h 4o
-22,55

0.2235

0.0835

5185
.3106

.1393
.03116

1,198
-130.31
-121. 78

3.286

2,992

49 4o

14,453

12.973
155.713
-21.63
20,15

0.640

0.220

.2912
-hUL3
1760
0923

1.0038

1.2350
-129 .1k
-121.90
3.5%4
3.275
k7,90
13.666
12,486
67.39

-19.37
-18.19

¢
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TABIE 5

COMPARTISON OF THE DIFFERENTIAL ISENTROPIC EXPONENTS m AND m'

THE VALUE FOR DISSOCIATING 002

53

WITH

2000
1.1610
.0312
1.1298
.0310
1.1300

2300
1.1635
.0555
1.1080
.0548
1.1087

2600
1.175%0
LOThT
1.1003
.0728
1.1022

2900
1.1982
.0939
1.1043
.0896
1.1086

3200

1.23%0
.1195
1.1155
.1082
1.1268




ESTIMATED BOUND DISPERSION IN Co, AT 2600 %x amD 1 ATM. OF THE BASIS OF DISSOCTIATIONS

TABIR &

200, Z22C0 + Op apd Op=220

T
B, Y
5 = ) 71 l -107 -20
[--1] [om &-1] on-1] [fai] ° o
Cage I
1x 102 1.1005 1.295 x 1073 7.682 x 10: 5.296 X 10:: 4067 x 10-3 T68.2 1.0000 1.0000
1x 10 1.1030 9.25 X 10-3 7.695 x 10 3719 X 10 2.906 x 1072 76.95 9962 .592%
now 'rn3 1. 1N T L0 w 1n'2 M v 1nh 1 21 v =3 om0 o 1n—e a0 e AN L
F=Rr it EXY IV T A m—a (ajver A~ .A.vk LeJur A AW Ji o A AU e L - e -9?26
3% 109 1.112% £2.312 x 10 7.722 x 10 2.822 x 1073 7,260 x 10-2 25.75 ST21 9450
5 x 10? 1L12% 3.030 x 10~ T.770 x 10* 6.120 x 1073 9,516 x 10~2 15.54 .ghaT .884g
Tx m: 1.1372 3.220 x 102 7.8k x 10% 9.065 x 1073 1.011 x 10-1 1.16 9134 .8343
1x 1oIL 1.1498 3.043.x 1072 7.853 x 104 1.217 x 1072 9,558 x 10-2 7.853 .B854 7639
L 2x 10 1,1665 2,036 x 1072 7.912 x 10" 1.617 x 10-2 6,396 x 1072 3.956 8507 237
1x mz 1.1746 1,569 X mj 7.937 %. m’; 1.808 x 107% 1,435 x 102 937 .8346 .6566
1x 107 1.17% li-592 x 107 7940 x 10° 1,817 x 1072 1443 x 2073 .0Toh .8339 L6954
1x 107 1.17% k592 x 10-3 7.940 x 10% 1.817 x 1072 1.4h3 x 1074 .0079% .8330 6954
Cass IT1
1 x 102 1.1005 k925 x 10-* 7.685 x 0% 2.013 x 10-6 1547 % 10-3 T€8.5 1.0000
\ ) . . . 1,0000
1 x 103 1.1019 8.96 x 104 7.690 x 10% 3.660 x 1077 2,814 x 1073 76,90 9996 .9992
1y w0t 1.100k k.52 x 1073 7.690 % 10 1.850 % 1573 1.523 % 1078 T 550 5815 9633
3x 10'; 1050 | 1.296 x 10-2 7.700 x 0% | 1.586x 10% | Ko7k x 1072 | 24567 .8533 7281
6% 10 1.1128 2,205 x 1072 7.72% x 20t 5.604 x 1072 7.210 x 1072 1.287 5710 .3560
1x 107 1.1257 3.011 x 1072 7.770 x 0% 1.218 x 10-1 9.%6 x 1072 oTTT 2958 08T
2 x 107 1.1500 | 3.026 x 1072 7.860 x 10% 2.419 x 1071 9.505 x 10-2 .393 .08501 7.923 x 1073
X x m? 1.1665 | 2.000 x 1072 7.912 x 10* 2,908 x 1071 6,345 3 1072 L1978 _okoly 1.635 % 303
-3 b - - )
1x 10_r 1.1735 8.935 x m_k 7.932 x 10% 3.539 x mﬂi 2,808 x 1072 .om3 .0290% 8.433 x 107%
1% 10 1.170 9,108 x 10 7.938 x 10 3.605 X 10 2.861 x 1073 L0079h 02719 7.393 x 107+

-
=
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(a) Dependence of m and.the sound veloclty a on the frequency.

~

“ rx/c; -8 —
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(b) Dependence of the damping constant 7 referred to unit length (em) for the
sound amplitude.
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(c) Dependence of the phase angle @ and of the damping constant v referred to
the wave length £ on the frequency.
Figure 1.- Estimated sound dispersion in pure 02 at 2600° K and 1 atmosphere
total pressure on the basis of the dissociation 0,2 2 0 alone.
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Figure 2,- Differential isentropic exponent in pure COg for full equilibrium:
c
k= EE = ratio of molar heats, m = exponent in the lsentropic curve
v
pV™ = const. taking account of the two equilibria 2C0O5¢=2 2CO+ O, and

022 2 0, m' = isentropic exponent for the case of the first reaction alone.
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(a) Dependence of m and the sound velocity a on
the frequency.
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(b) Phase angle @ and damping constant -/ referred to
the wave length Z as functions of the frequency.

Figure 3.- Estimated sound dispersion in CO2 at 2600° K and 1 atmosphere

total pressure on the basis of the dissociations 2C0g &> 2CO + Oy and
09<=2 0. '
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Figure 3.- Concluded.
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